# In-person session 3 

## January 26, 2023

PMAP 8521: Program evaluation

Andrew Young School of Policy Studies

## Plan for today

## Logic models

## R FAQS

## Regression FAQs

Transforming data with dplyr

## Regression with R

## Logic models

Logic models as managerial tools

## Inputs vs. Activities vs. Outputs vs. Outcomes

## Impact theory vs. logic model

## Impact theory

## Ensure that the theory linking activities to the outcomes is sound!




## MPA/MPP at GSU

## Master of Public Policy

Preparing students for roles as effective citizens and workers in the public sphere.

The Master of Public Policy (MPP) is an interdisciplinary degree program designed to prepare students for work in the analysis, development, and evaluation of public policies. In all levels of government and on a global scale, public needs and limited resources require public policy choices that are at once economically efficient, socially and technically effective, and politically responsive. Such choices confront policymakers in a broad range of critical issues, including health, education, economic development, public finance, social policy, nonprofit policy, and disaster policy.

Decision-makers often lack the knowledge and skills needed to interpret the full social, political, economic, and technical dimensions of the policy issues they face. In response, state and local governments, businesses, and federal agencies have turned to trained policy analysts for assistance in assessing policy options and in evaluating public programs. The same is true for nonprofit agencies, such as hospitals, schools, emergency preparedness and relief agencies, and regional planning organizations.

Master of Public Administration
A flexible program for working professionals and full-time scholars.

About Curriculum Careers Admissions MPA vs.MPP

The mission of the Master of Public Administration (MPA) program is to prepare students to become leaders in public service careers as executives, managers, analysts, and policy specialists in government and nonprofit organizations.

## Isn't it best to always have an articulated theory?

Should implicit theory and articulated theory be the same thing in most cases?

## How much does this evaluation stuff cost?

## Can you do scaled-down versions of these evaluations?

## What if a program exists already and doesn't have a logic model?

Why would a program aim for final outcomes that can't be measured?

What should you do if you find that your theory of change (or logic model in general) is wrong in the middle of the program? Is it ethical to stop or readjust?

## R FAQs

## Main goals with R

## Manipulate data

## Plot data

## Analyze data with regression models

# How to find R help online 

## RStudio Community

## Stack Overflow

Google ("rstats")
Twitter/Mastodon (\#rstats)
ChatGPT (overconfident glorified autocomplete)

## What the heck is a tibble?

## RStudio fun

File paths, working directories, and RStudio projects

The hyperliterality of computers

## Side-by-side regression tables

|  | Model 1 | Model 2 | Model 3 | Model 4 |
| :---: | :---: | :---: | :---: | :---: |
| (Intercept) | 362.307 | -5780.831*** | -5736.897*** | -5433.534*** |
|  | (283.345) | (305.815) | (307.959) | (286.558) |
| bill_length_mm | 87.415*** |  | 6.047 | -5.201 |
|  | (6.402) |  | (5.180) | (4.860) |
| flipper_length_mm |  | 49.686*** | 48.145*** | 48.209*** |
|  |  | (1.518) | (2.011) | (1.841) |
| sexmale |  |  |  | 358.631*** |
|  |  |  |  | (41.572) |
| Num.Obs. | 342 | 342 | 342 | 333 |
| R2 | 0.354 | 0.759 | 0.760 | 0.807 |
| R2 Adj. | 0.352 | 0.758 | 0.759 | 0.805 |
| AIC | 5400.0 | 5062.9 | 5063.5 | 4863.3 |
| BIC | 5411.5 | 5074.4 | 5078.8 | 4882.4 |
| Log.Lik. | -2696.987 | -2528.427 | -2527.741 | -2426.664 |
| F | 186.443 | 1070.745 | 536.626 | 457.118 |
| RMSE | 643.54 | 393.12 | 392.34 | 353.66 |

## Model 1 Model 2 Model 3 Model 4

| (Intercept) | 362.307 | -5780.831*** | -5736.897*** | -5433.534*** |
| :---: | :---: | :---: | :---: | :---: |
|  | (283.345) | (305.815) | (307.959) | (286.558) |
| bill_length_mm | 87.415*** |  | 6.047 | -5.201 |
|  | (6.402) |  | (5.180) | (4.860) |
| flipper_length_mm |  | 49.686*** | 48.145*** | 48.209*** |
|  |  | (1.518) | (2.011) | (1.841) |
| sexmale |  |  |  | 358.631*** |
|  |  |  |  | (41.572) |
| Num.Obs. | 342 | 342 | 342 | 333 |
| R) | 0354 | 0759 | $\bigcirc 760$ | $\bigcirc 807$ |

## See full documentation and examples for modelsummary () here

Make nicer tables when knitting with kable()
(Or even fancier tables with kableExtra!)

## Regression FAQs

## Drawing lines through points

https://evalsp23.classes.andrewheiss.com/slides/02-slides.html\#17
Locally estimated/weighted scatterplot smoothing (LOESS/LOWESS)
is a common method (but not the only one!)


# Regression equations 

And is the intercept ever useful, or should we always ignore it?

## What does it mean to hold something constant?

## Why is one category always left out when you use a categorical variable?




Why use two steps to create a regression in $\mathbf{R}$ ? (i.e. assigning it to an object with <-?)

## Why use tidy() <br> from the broom package?

## How was the 0.05 significance threshold determined?

Could we say something is significant if $p>0.05$, but just note that it is at a higher p-value?
Or does it have to fall under 0.05 ?

## Why all this convoluted logic of null worlds?

## Different "dialects" of statistics

## Frequentist

$P\left(\right.$ data $\left.\mid H_{0}\right)$

"Regular" statistics; what you've learned (and are learning here)

## Bayesian

$P(H \mid$ data $)$

## Requires lots of computational power

# Do we care about the actual coefficients or just whether or not they're significant? 

## How does significance relate to causation?

If we can't use statistics to assert causation how are we going to use this information in program evaluation?

## What counts as a "good" R"?

## $\mathbf{R}^{2}$ represented as an Euler diagram

Orange area ( $D+E+G$ ) shows the total variance in outcome Y that is jointly explained by X 1 and X 2




## Regression focused on prediction

Focus is on $Y$
Minimize unexplained variation in the outcome

## Regression focused on estimation

Focus is on a single $X$
Get that little sliver as accurate as possible


## Transforming data with dplyr

## Regression with R

