DAGS and potential outcomes

Session 5
PMAP 8521: Program evaluation
Andrew Young School of Policy Studies

Plan for today

do()ing observational causal inference

Potential outcomes

do()ing observational causal inference

Structural models

The relationship between nodes can be described with equations

$$
\begin{aligned}
& \mathrm{Loc}=f_{\mathrm{Loc}}(\mathrm{U} 1) \\
& \mathrm{Bkgd}=f_{\mathrm{Bkgd}}(\mathrm{U} 1) \\
& \mathrm{JobCx}=f_{\mathrm{JobCx}}(\mathrm{Edu}) \\
& \mathrm{Edu}=f_{\mathrm{Edu}}(\text { Req, Loc, Year }) \\
& \text { Earn }=f_{\mathrm{Earn}}(\mathrm{Edu}, \text { Year, Bkgd }, \\
&\text { Loc, JobCx })
\end{aligned}
$$

Structural models

dagify () in ggdag forces you to think this way

Earn $=f_{\text {Earn }}($ Edu, Year, Bkgd,
Loc, JobCx)
Edu $=f_{\text {Edu }}($ Req, Loc, Year $)$
$\mathrm{JobCx}=f_{\mathrm{JobCx}}(\mathrm{Edu})$
$\mathrm{Bkgd}=f_{\mathrm{Bkgd}}(\mathrm{U} 1)$
$\mathrm{Loc}=f_{\mathrm{Loc}}(\mathrm{U} 1)$

```
dagify(
    Earn ~ Edu + Year + Bkgd + Loc + JobCx,
    Edu ~ Req + Loc + Bkgd + Year,
    JobCx ~ Edu,
    Bkgd ~ U1,
    Loc ~ U1
)
```


Causal identification

All these nodes are related; there's correlation between them all

We care about Edu \rightarrow Earn, but what do we do about all the other nodes?

Causal identification

A causal effect is identified if the association between treatment and outcome is propertly stripped and isolated

Paths and associations

Arrows in a DAG transmit associations

You can redirect and control those paths by "adjusting" or "conditioning"

Three types of associations

Confounding

Common cause

Causation

Mediation

Collision

Selection / endogeneity

Interventions

do-operator

Making an intervention in a DAG

$$
P[Y \mid d o(X=x)] \quad \text { or } \quad E[Y \mid d o(X=x)]
$$

$\mathrm{P}=$ probability distribution, or $\mathrm{E}=$ expectation/expected value

$$
\begin{aligned}
& \mathrm{Y}=\text { outcome, } \mathrm{X}=\text { treatment; } \\
& \mathrm{X}=\text { specific value of treatment }
\end{aligned}
$$

Interventions

$$
E[Y \mid d o(X=x)]
$$

E[Earnings | do(One year of college)]

E[Firm growth | do(Government R\&D funding)]

E[Air quality / do(Carbon tax)]

E[Juvenile delinquency | do(Truancy program)]
E[Malaria infection rate | do(Mosquito net)]

Interventions

When you do() X, delete all arrows into it

Experimental DAG

Interventions

$E[$ Earnings $\mid d o($ College education $)]$

Observational DAG

Experimental DAG

Undo()ing things

We want to know P[Y|do(X)] but all we have is observational data X, Y, and Z

$$
P[Y \mid d o(X)] \neq P(Y \mid X)
$$

Correlation isn't causation!

Undo()ing things

Our goal with observational data:

 Rewrite $\mathrm{P}[\mathrm{Y} \mid \mathrm{do}(\mathrm{X})]$ so that it doesn't have a do() anymore (is "do-free")
do-calculus

A set of three rules that let you manipulate a DAG in special ways to remove do() expressions

The do-calculus Let G be a CGM, $G_{\bar{T}}$ represent G post-intervention (i.e with all links into T removed) and $G_{\underline{T}}$ represent G with all links out of T removed. Let $d o(t)$ represent intervening to set a single variable T to t,

Rule 1: $\mathbb{P}(y \mid d o(t), z, w)=\mathbb{P}(y \mid d o(t), z)$ if $Y \Perp$ $W \mid(Z, T)$ in $G_{\bar{T}}$

Rule 2: $\quad \mathbb{P}(y \mid d o(t), z)=\mathbb{P}(y \mid t, z)$ if $Y \Perp T \mid Z$ in $G_{\underline{T}}$
Rule 3: $\mathbb{P}(y \mid d o(t), z)=\mathbb{P}(y \mid z)$ if $Y \Perp T \mid Z$ in $G_{\bar{T}}$, and Z is not a decedent of T.

Special cases of do-calculus

Backdoor adjustment

Frontdoor adjustment

Backdoor adjustment

$$
P[Y \mid d o(X)]=\sum_{Z} P(Y \mid X, Z) \times P(Z)
$$

The right-hand side of the equation means "the effect of
 X on Y after adjusting for Z"

There's no do() on that side!

Frontdoor adjustment

$$
\begin{aligned}
& \mathbf{S} \rightarrow \mathbf{T} \text { is } d \text {-separated; } \mathbf{T} \rightarrow \mathbf{C} \text { is } \boldsymbol{d} \text {-separated } \\
& \text { combine the effects to find } \mathbf{S} \rightarrow \mathbf{C}
\end{aligned}
$$

Moral of the story

If you can transform do() expressions to do-free versions, you can legally make causal inferences from observational data

Backdoor adjustment is easiest to see + dagitty and ggdas do this for you!

Fancy algorithms (found in the causaleffect package) can do the official do-calculus for you too

Potential outcomes

Program effect

Post-program outcome level
Outcome with program

outcome level

Before program
During program
After program

Some equation translations

Causal effect $=\delta$ (delta)

$$
\begin{gathered}
\delta=P[Y \mid d o(X)] \\
\delta=E[Y \mid d o(X)]-E[Y \mid \hat{d o}(X)] \\
\delta=(Y \mid X=1)-(Y \mid X=0) \\
\delta=Y_{1}-Y_{0}
\end{gathered}
$$

Fundamental problem of causal inference

$$
\delta_{i}=Y_{i}^{1}-Y_{i}^{0} \quad \text { in real life is } \quad \delta_{i}=Y_{i}^{1}-? ? ?
$$

Individual-level effects are impossible to observe!
There are no individual counterfactuals!

Average treatment effect (ATE)

Solution: Use averages instead

$$
\mathrm{ATE}=E\left(Y_{1}-Y_{0}\right)=E\left(Y_{1}\right)-E\left(Y_{0}\right)
$$

Difference between average/expected value when program is on vs. expected value when program is off

$$
\delta=(\bar{Y} \mid P=1)-(\bar{Y} \mid P=0)
$$

Person	Age	Treated	Outcome with program	Outcome without program	Effect
1	Old	TRUE	**80**	60	**20**
2	Old	TRUE	**75**	70	**5**
3	Old	TRUE	**85**	80	**5**
4	Old	FALSE	70	**60**	**10**
5	Young	TRUE	**75**	70	**5**
6	Young	FALSE	80	**80**	**0**
7	Young	FALSE	90	**100**	**-10**
8	Young	FALSE	85	**80**	**5**

Person	Age	Treated	Outcome with program	Outcome without program	Effect
1	Old	TRUE	** 80 **	60	**20**
2	Old	TRUE	**75**	70	**5**
3	Old	TRUE	**85**	80	**5**
4	Old	FALSE	70	**60**	**10**
5	Young	TRUE	**75**	70	**5**
6	Young	FALSE	80	**80**	**0**
7	Young	FALSE	90	**100**	**-10**
8	Young	FALSE	85	**80**	**5**

$$
\delta=(\bar{Y} \mid P=1)-(\bar{Y} \mid P=0) \quad \text { ATE }=\frac{20+5+5+5+10+0+-10+5}{8}=5
$$

CATE

ATE in subgroups

Is the program more effective for specific age groups?

Person	Age	Treated	Outcome with program	Outcome without program	Effect
1	Old	TRUE	$* * 80^{* *}$	60	$* * 20^{* *}$
2	Old	TRUE	$* * 75^{* *}$	70	$* * 5^{* *}$
3	Old	TRUE	$* * 85^{* *}$	80	$* * 5^{* *}$
4	Old	FALSE	70	$* * 60^{* *}$	$* * 10^{* *}$
5	Young	TRUE	$* * 75^{* *}$	70	$* * 5^{* *}$
6	Young	FALSE	80	$* * 80^{* *}$	$* * 0^{* *}$
7	Young	FALSE	90	$* * 100^{* *}$	$* *-10^{* *}$
8	Young	FALSE	85	$* * 80^{* *}$	$* * 5 *$

$$
\begin{array}{ll}
\delta=\left(\bar{Y}_{\mathrm{O}} \mid P=1\right)-\left(\bar{Y}_{\mathrm{O}} \mid P=0\right) & \mathrm{CATE}_{\mathrm{Old}}=\frac{20+5+5+10}{4}=10 \\
\delta=\left(\bar{Y}_{\mathrm{Y}} \mid P=1\right)-\left(\bar{Y}_{\mathrm{Y}} \mid P=0\right) & \mathrm{CATE}_{\mathrm{Young}}=\frac{5+0-10+5}{4}=0
\end{array}
$$

ATT and ATU

Average treatment on the treated

ATT / TOT

Effect for those with treatment

Average treatment on the untreated

ATU / TUT

Effect for those without treatment

Person	Age	Treated	Outcome with program	Outcome without program	Effect
1	Old	TRUE	$* * 80^{* *}$	60	$* * 20^{* *}$
2	Old	TRUE	$* * 75^{* *}$	70	$* * 5^{* *}$
3	Old	TRUE	$* * 85^{* *}$	80	$* * 5^{* *}$
4	Old	FALSE	70	$* * 60^{* *}$	$* * 10^{* *}$
5	Young	TRUE	$* * 75^{* *}$	70	$* * 5^{* *}$
6	Young	FALSE	80	$* * 80^{* *}$	$* * 0^{* *}$
7	Young	FALSE	90	$* * 100^{* *}$	$* *-10^{* *}$
8	Young	FALSE	85	$* * 80^{* *}$	$* * 5 *$

$$
\begin{array}{ll}
\delta=\left(\bar{Y}_{\mathrm{T}} \mid P=1\right)-\left(\bar{Y}_{\mathrm{T}} \mid P=0\right) & \mathrm{CATE}_{\text {Treated }}=\frac{20+5+5+5}{4}=8.75 \\
\delta=\left(\bar{Y}_{\mathrm{U}} \mid P=1\right)-\left(\bar{Y}_{\mathrm{U}} \mid P=0\right) & \text { CATE }_{\text {Untreated }}=\frac{10+0-10+5}{4}=1.25
\end{array}
$$

ATE, ATT, and ATU

The ATE is the weighted average of the ATT and ATU

$\mathrm{ATE}=\left(\pi_{\text {Treated }} \times \mathrm{ATT}\right)+\left(\pi_{\text {Untreated }} \times \mathrm{ATU}\right)$

$$
\begin{gathered}
\left(\frac{4}{8} \times 8.75\right)+\left(\frac{4}{8} \times 1.25\right) \\
4.375+0.625=5
\end{gathered}
$$

n here means "proportion," not 3.1415

Selection bias

ATE and ATT aren't always the same
 $$
\text { ATE }=\text { ATT + Selection bias }
$$

$$
\begin{aligned}
5 & =8.75+x \\
x & =-3.75
\end{aligned}
$$

Randomization fixes this, makes $\mathrm{x}=0$

Actual data

Person	Age	Treated	Actual outcome
1	Old	TRUE	80
2	Old	TRUE	75
3	Old	TRUE	85
4	Old	FALSE	60
5	Young	TRUE	75
6	Young	FALSE	80
7	Young	FALSE	100
8	Young	FALSE	80

Treatment not randomly assigned

We can't see unit-level causal effects

What do we do?!

Actual data

Person	Age	Treated	Actual outcome
1	Old	TRUE	80
2	Old	TRUE	75
3	Old	TRUE	85
4	Old	FALSE	60
5	Young	TRUE	75
6	Young	FALSE	80
7	Young	FALSE	100
8	Young	FALSE	80

Treatment seems to be correlated with age

Actual data

Person	Age	Treated	Actual outcome
1	Old	TRUE	80
2	Old	TRUE	75
3	Old	TRUE	85
4	Old	FALSE	60
5	Young	TRUE	75
6	Young	FALSE	80
7	Young	FALSE	100
8	Young	FALSE	80

We can estimate the ATE by finding the weighted average of age-based CATEs

As long as we assume/pretend treatment was randomly assigned within each age = unconfoundedness

$\widehat{\mathrm{ATE}}=\pi_{\text {Old }} \mathrm{C} \widehat{\mathrm{ATE}}_{\text {Old }}+\pi_{\text {Young }} \mathrm{CATE} \widehat{\mathrm{Y}}_{\text {Yung }}$

Actual data

$\widehat{\mathrm{ATE}}=\pi_{\text {Old }} \mathrm{C} \widehat{\mathrm{ATE}}{ }_{\text {old }}+\pi_{\text {Young }} \mathrm{CA} \widehat{\text { TEYoung }}$

Person	Age	Treated	Actual outcome
1	Old	TRUE	80
2	Old	TRUE	75
3	Old	TRUE	85
4	Old	FALSE	60
5	Young	TRUE	75
6	Young	FALSE	80
7	Young	FALSE	100
8	Young	FALSE	80

$$
\begin{aligned}
& \mathrm{CATE}_{\text {Old }}=\frac{80+75+85}{3}-\frac{60}{1}=20 \\
& \mathrm{CATE} \\
& \text { Young } \\
& =\frac{75}{1}-\frac{80+100+80}{3}=-11.667 \\
& \widehat{\mathrm{ATE}}=\left(\frac{4}{8} \times 20\right)+\left(\frac{4}{8} \times-11.667\right)=4.1667
\end{aligned}
$$

iifDON'T DO THIS!!

$$
\widehat{\mathrm{ATE}}=\mathrm{CA} \widehat{\mathrm{TE} \mathrm{E}_{\text {Treated }}}-\mathrm{CAT} \widehat{\mathrm{E}_{\text {Untreated }}}
$$

Person	Age	Treated	Actual outcome
1	Old	TRUE	80
2	Old	TRUE	75
3	Old	TRUE	85
4	Old	FALSE	60
5	Young	TRUE	75
6	Young	FALSE	80
7	Young	FALSE	100
8	Young	FALSE	80

$$
\begin{aligned}
& \mathrm{CATE} \widehat{\mathrm{Tr} e a t e d} \\
& {\widehat{\mathrm{CATE}}{ }_{\text {Untreated }}}=\frac{80+75+85+75}{4}=78.75 \\
& \quad \widehat{\mathrm{ATE}}=78.75-80+100+80 \\
& 4
\end{aligned}=80
$$

Matching and ATEs

$\widehat{\mathrm{ATE}}=\pi_{\text {Old }} \mathrm{C} \widehat{\mathrm{ATE}}_{\text {Old }}+\pi_{\text {Young }} \mathrm{CA} \widehat{\mathrm{TE}} \widehat{\text { Young }}$

We used age here because it correlates with (and confounds) the outcome

And we assumed unconfoundedness; that treatment is
 randomly assigned within the groups

Table 2.1
The college matching matrix

Applicant group	Student	Private			Public			$\begin{gathered} 1996 \\ \text { earnings } \end{gathered}$
		Ivy	Leafy	Smart	All State	Tall State	Altered State	
A	1		Reject	Admit		Admit		110,000
	2		Reject	Admit		Admit		100,000
	3		Reject	Admit		Admit		110,000
B	4	Admit			Admit		Admit	60,000
	5	Admit			Admit		Admit	30,000
C	6		Admit					115,000
	7		Admit					75,000
D	8	Reject			Admit	Admit		90,000
	9	Reject			Admit	Admit		60,000

Note: Enrollment decisions are highlighted in gray.

Table 2.1
The college matching matrix

Applicant group	Student	Private			Public			$\begin{gathered} 1996 \\ \text { earnings } \end{gathered}$
		Ivy	Leafy	Smart	All State	Tall State	Altered State	
A	1		Reject	Admit		Admit		110,000
	2		Reject	Admit		Admit		100,000
	3		Reject	Admit		Admit		110,000
B	4	Admit			Admit		Admit	60,000
	5	Admit			Admit		Admit	30,000
C	6		Admit					115,000
	7		Admit					75,000
D	8	Reject			Admit	Admit		90,000
	9	Reject			Admit	Admit		60,000

This is tempting!

Average private -
 Average public

$$
\begin{aligned}
& \frac{110+100+60+115+75}{5}=92 \\
& \frac{110+30+90+60}{4}=72.5 \\
&\left(92 \times \frac{5}{9}\right)-\left(72.5 \times \frac{4}{9}\right)=18,888 \\
& \text { IS S MTOUS }
\end{aligned}
$$

Note: Enrollment decisions are highlighted in gray.

$\widehat{\mathrm{ATE}}=\pi_{\text {Private }} \mathrm{CA} \widehat{\mathrm{TE} \text { Private }}+\pi_{\text {Public }} \mathrm{CA} \widehat{T E} \widehat{P P b l i c ~}$

Grouping and matching

Table 2.1
The college matching matrix

Applicant group	Student	Private			Public			$\begin{aligned} & 1996 \\ & \text { earnings } \end{aligned}$
		Ivy	Leafy	Smart	All State	Tall State	Altered State	
A	1		Reject	Admit		Admit		110,000
	2		Reject	Admit		Admit		100,000
	3		Reject	Admit		Admit		110,000
B	4	Admit			Admit		Admit	60,000
	5	Admit			Admit		Admit	30,000
C	6		Admit					115,000
	7		Admit					75,000
D	8	Reject			Admit	Admit		90,000
	9	Reject			Admit	Admit		60,000

Note: Enrollment decisions are highlighted in gray.

These groups look like they have similar characteristics

Table 2.1
The college matching matrix

Applicant group	Student	Private			Public			$\begin{gathered} 1996 \\ \text { earnings } \end{gathered}$
		Ivy	Leafy	Smart	All State	Tall State	Altered State	
A	1		Reject	Admit		Admit		110,000
	2		Reject	Admit		Admit		100,000
	3		Reject	Admit		Admit		110,000
B	4	Admit			Admit		Admit	60,000
	5	Admit			Admit		Admit	30,000
C	6		Admit					115,000
	7		Admit					75,000
D	8	Reject			Admit	Admit		90,000
	9	Reject			Admit	Admit		60,000

CATE Group A + CATE Group B

$$
\begin{aligned}
\frac{110+100}{2}-110 & =-5,000 \\
60-30 & =30,000 \\
\left(-5 \times \frac{3}{5}\right)+\left(30 \times \frac{2}{5}\right) & =9,000
\end{aligned}
$$

Note: Enrollment decisions are highlighted in gray.

$\widehat{\mathrm{ATE}}=\pi_{\text {Group } \mathrm{A}} \mathrm{CA} \widehat{\mathrm{CE}_{\text {Group } \mathrm{A}}}+\pi_{\text {Group } \mathrm{B}} \mathrm{CATE}_{\text {Group B }}$

Matching with regression

Earnings $=\alpha+\beta_{1}$ Private $+\beta_{2}$ Group $+\epsilon$
 ```model_earnings <- lm(earnings ~ private + group_A, data = schools_small)```

term	estimate $\boldsymbol{\text { std.error }}$ statistic p.value			
(Intercept)	40000	11952.29	3.35	0.08
privateTRUE	10000	13093.07	0.76	0.52
group_ATRUE	60000	13093.07	4.58	0.04

This is less wrong!
Significance details!

