Regression discontinuityl

Session 10
PMAP 8521: Program evaluation
Andrew Young School of Policy Studies

Arbitrary cutoffs and causal inference

Drawing lines and measuring gaps

Main RDD concerns

Arbitrary cutoffs and causal inference

Quasi-experiments again

Instead of using carefully adjusted DAGs, we can use context to isolate/identify the pathway between treatment and outcome in observational data

Diff-in-diff was one kind of quasi-experiment

Treatment/control + before/after

Regression discontinuity designs (RDD) are another

Arbitrary rules determine access to programs

Rules to access programs

Lots of policies and programs are based on arbitrary rules and thresholds

If you're above the threshold, you're in the program; if you're below, you're not (or vice versa)

Key terms

Running / forcing variable

Index or measure that determines eligibility

Cutoff / cutpoint / threshold

Number that formally assigns access to program

Discontinuities everywhere!

Size	Annual	Monthly	$\mathbf{1 3 8 \%}$	$\mathbf{1 5 0 \%}$	$\mathbf{2 0 0 \%}$
1	$\$ 12,760$	$\$ 1,063$	$\$ 17,609$	$\$ 19,140$	$\$ 25,520$
2	$\$ 17,240$	$\$ 1,437$	$\$ 23,791$	$\$ 25,860$	$\$ 34,480$
3	$\$ 21,720$	$\$ 1,810$	$\$ 29,974$	$\$ 32,580$	$\$ 43,440$
4	$\$ 26,200$	$\$ 2,183$	$\$ 36,156$	$\$ 39,300$	$\$ 52,400$
5	$\$ 30,680$	$\$ 2,557$	$\$ 42,338$	$\$ 46,020$	$\$ 61,360$
6	$\$ 35,160$	$\$ 2,930$	$\$ 48,521$	$\$ 52,740$	$\$ 70,320$
7	$\$ 39,640$	$\$ 3,303$	$\$ 54,703$	$\$ 59,460$	$\$ 79,280$
8	$\$ 44,120$	$\$ 3,677$	$\$ 60,886$	$\$ 66,180$	$\$ 88,240$

Medicaid

138\%*

ACA subsidies

CHIP

200\%

SNAP/Free lunch 130\%

Hypothetical tutoring program

Students take an entrance exam

Those who score 70 or lower get a free tutor for the year

Students then take an exit exam at the end of the year

Causal inference intuition

The people right before and right after the threshold are essentially the same

Causal inference intuition

The people right before and right after the threshold are essentially the same

Pseudo treatment and control groups!

Compare outcomes for those right before/after, calculate difference

- Tutor
- No tutor

Geographic discontinuities

Treatment Status (Eastern Side of Time Zone Border) • No • Yes

When Time Is of the Essence: A Natural Experiment on How Time Constraints Influence Elections

Jerome Schafer, Ludwig Maximilian University of Munich John B. Holbein, University of Virginia

Foundational theories of voter turnout suggest that time is a key input in the voting decision, but we possess little causal evidence about how this resource affects electoral behavior. In this article, we use over two decades of elections data and a novel geographic regression discontinuity design that leverages US time zone boundaries. Our results show that exogenous shifts in time allocations have significant political consequences. Namely, we find that citizens are less likely to vote if they live on the eastern side of a time zone border. Time zones also exacerbate participatory inequality and push election quence of insufficient slepp and moderated by the convenience of voting. Regardless of the exact mechanisms, our results indicate that local differences in daily schedules affect how difficult it is to vote and shape the composition of the electorate.
lthough in recent years the administrative barriers
to voting have declined in many democracies (Blais 2010), many eligible citizens still fail to vote. In the United States, about 40% of registered voters do not participate in presidential elections, with abstention rates soaring as high as 60% in midterms and 70% in local elections (Hajnal and Trounsine 2016). Moreove, rates of political particiption have remained stubbornly low among vulnerable group
vote, many nonvoters report "not having enough time"- or a close derivative (e.g., "I'm too busy" or "[Voting] takes too long"; Pew Research Center 2006). Moreover, recent studies suggest that levels of turnout may be shaped by time costs such as how long it takes to register to vote (Leighley and Nagler 2013), to find and travel to a polling location (Brady and McNulty 2011; Dyck and Gimpel 2005), and to wait in line to vote (Pettigrew 2016).

Geographic discontinuities

Lower turnout in counties on the eastern side of the boundary

Election schedules cause fluctuations in turnout

Time discontinuities

After Midnight:
A Regression Discontinuity Design in Length of Postpartum Hospital Stays ${ }^{\dagger}$
By Douglas Almond and Joseph J. Doyle Jr.*

Estimates of moral hazard in health insurance markets can be confounded by adverse selection. This paper considers a plausibly exogenous source of variation in insurance coverage for childbirth in California. We find that additional health insurance coverage induces substantial extensions in length of hospital stay for mother and newborn. However, remaining in the hospital longer has no effect on readmissions or mortality, and the estimates are precise. Our results suggest that for uncomplicated births, minimum insurance mandates incur substantial costs without detectable health benefits. (JEL D82, G22, I12, I18, J13)

California requires that insurance cover two days of post-partum hospitalization

Does extra time in the hospital improve health outcomes?

Time discontinuities

Panel B. Additional midnights: after law change

Time discontinuities

Panel B. Twenty-eight day readmission rate: after law change

Panel D. Twenty-eight day mortality rate: after law change

...but delivering at 12:01 AM has no effect on readmission rates or mortality rates

Test score discontinuities

THE EFFECT OF ATTENDING THE FLAGSHIP STATE UNIVERSITY ON EARNINGS: A DISCONTINUITY-BASED APPROACH

Mark Hoekstra*

Abstract-This paper examines the effect of attending the flagship state university on the earnings of 28 to 33 year olds by combining confidential admissions records from a large state university with earnings data collected through the state's unemployment insurance program. To distinguish the effect of attending the flagship state university from the effects ron ling's lored probability of enrollment at the admission cutoff The results indicate that attending the most selective state university causes earnings to be approximately 20% higher for white men.

I. Introduction

$\mathbf{W}^{\text {HILE }}$ there has been considerable study of the effect of educational attainment on earnings, less is known regarding the economic returns to college quality. This paper examines the economic returns to college quality in the context of attending the most selective public state university. It does so using an intuitive regression discontinuity design that compares the earnings of 28 to 33 year olds who were barely admitted to the flagship to those of individuals who were barely rejected.
Convincingly estimating the economic returns to college quality requires overcoming the selection bias arising from the fact that attendance at more selective universities is likely correlated with unobserved characteristics that them-
leges but chose to attend less selective institutions. They find that attending more selective colleges has a positive effect on earnings only for students from low-income families. Brewer, Eide, and Ehrenberg (1999) estimate the payoff by explicitly modeling high school students' choice of college type and find significant returns to attending an elite private institution for all students. Behrman, Rozenz weig, and Taubman (1996) identify the effect by comparing female twin pairs and find evidence of a positive payoff from attending Ph.D.-granting private universities with wellpaid senior faculty. Using a similar approach, Lindahl and Regner (2005) use Swedish sibling data and show that cross-sectional estimates of the selective college wage premium are twice the within-family estimates.

This paper uses a different strategy in that it identifies the effect of school selectivity on earnings by comparing the earnings of those just below the cutoff for admission to the flagship state university to those of applicants who were barely above the cutoff for admission. To do so, I combined confidential administrative records from a large flagship state university with earnings records collected by the state through the unemployment insurance program. To put the selectivity of the flagship in context, the average SAT scores

Does going to the main state university (e.g. UGA) make you earn more money?

SAT scores are an arbitrary cutoff for accessing the university

Test score discontinuities

Cutoff seems rule-based

Earnings are slightly higher

RDDs are all the rage

People love these things!

They're intuitive, compelling, and highly graphical

ABSTRACT
Methods Matter: P-Hacking and CausalInference in Economics*

RDD less susceptible to phacking and selective publication than DID or IV

Drawing lines and measuring gaps

Main goal of RD

Measure the gap in outcome for people on both sides of the cutpoint

Gap $=\delta=$ local average treatment effect (LATE)

- Tutor
- No tutor

Drawing lines

The size of the gap depends on how

 you draw the lines on each side of the cutoffThe type of lines you choose can change the estimate of δ-sometimes by a lot!

There's no one right way to draw lines!

Line-drawing considerations

Parametric vs. non-parametric lines

Measuring the gap

Bandwidths

Kernels

Parametric lines

Formulas with parameters

$$
\begin{gathered}
y=m x+b \\
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}
\end{gathered}
$$

$$
y=10+4 x
$$

Parametric lines

Not just for straight lines! Make curvy with exponents or trigonometry

$$
\begin{gathered}
y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{7} \\
y=\beta_{0}+\beta_{1} x+\beta_{2} \sin (x)
\end{gathered}
$$

$$
y=120-3 x+0.07 x^{2}
$$

$$
y=300-25 x+0.65 x^{2}-0.004 x^{3}
$$

$$
y=10+4 x+50 \times \sin \left(\frac{x}{4}\right)
$$

Parametric lines

It's important to get the parameters right!

Line should fit the data pretty well

Nonparametric lines

Lines without parameters

Use the data to find the best line, often with windows and moving averages

Locally estimated/weighted scatterplot smoothing (LOESS/LOWESS)
is a common method (but not the only one!)

Measuring gap with parametric lines

- Tutor
- No tutor

Measuring gap with parametric lines

Easiest way: center the running variable around the threshold

id exit_exam entrance_exam entrance_centered				
1	78	92	22	tutoring
2	58	73	3	FALSE
3	62	54	-16	TRUE
4	67	98	28	FALSE
5	54	70	0	TRUE

$$
y=\beta_{0}+\beta_{1} \text { Running variable (centered) }+\beta_{2} \text { Indicator for treatment }
$$

Measuring gap with parametric lines


```
program_data <- tutoring %>%
    tidy(model1)
    mutate(entrance_centered =
    entrance_exam - 70)
model1 <- lm(exit_exam
            entrance_centered + tutoring,
    data = program_data)
\begin{tabular}{llcc} 
\#\# \# A tibble: \(3 \times 3\) & & \\
\#\# & term & estimate std.error \\
\#\# & <chr> & <dbl> & <dbl> \\
\#\# 1 & (Intercept) & 59.3 & 0.440 \\
\#\# 2 entrance_centered & 0.514 & 0.0268 \\
\#\# 3 tutoringTRUE & 11.0 & 0.802
\end{tabular}
```


Measuring gap with nonparametric lines

- Tutor
- No tutor

Can't use regression; use rdrobust R package

Measuring gap with nonparametric lines


```
rdrobust(y = tutoring$exit_exam, x = tutoring$entrance_exam, c = 70)
```

Method	Coef. Std. Err.		Z	P> $\|z\|$	[95\% C.I.]	
Conventional	-9.992	1.708	-5.852	0.000	[-13.339	, -6.646]
Robust	-	-	-4.992	0.000	[-14.244	, -6.212]

Bandwidths

All you really care about is the area right around the cutoff

Observations far away don't matter because they're not comparable

Bandwidth = window around cutoff

Bandwidth = 5

Bandwidth $\mathbf{=} \mathbf{2 . 5}$

Bandwidths

Algorithms exist to choose optimal width

Also use common sense

Maybe ± 5 for the entrance exam?

For robustness, check what happens if you double and halve the bandwidth

Kernels

Because we care the most about observations right by the cutoff, give more distant ones less weight

Kernel = method for assigning importance to observations based on distance to the cutoff

- Uniform - Triangular - Epanechnikov

Try everything!

Your estimate of δ depends on all these:

Line type (parametric vs. nonparametric)

Bandwidth (wide vs. narrow)
Kernel weighting

Try lots of different combinations!

Main RDD concerns

It's greedy!

You need lots of data, since you're throwing most of it away

It's limited in scope!

You're only measuring the ATE for people in the bandwidth

Local Average Treatment Effect (LATE)

It's limited in scope!

You can't make population-level claims with a LATE

(But can you really do that with RCTs or diff-in-diff?)

"The realistic conclusion to draw is that all quantitative empirical results that we encounter are 'local"'

Angrist and Pischke, Mostly Harmless Econometrics, pp. 23-24

Graphics are neat!

Which gaps are significant?

All of them!

Don't rely only on graphics

Super clear breaks are uncommon

Make graphs, but also find the actual δ value

Manipulation!

People might know about the cutoff and change their behavior

People might fudge numbers or work to cross the threshold to get in/out of program

If so, those right next to the cutoff are no longer comparable treatment/control groups

Distribution of marathon finishing times

Eric J. Allen, Patricia M. Dechow, Devin G. Pope, George Wu (2017)

NBA SHOT LOCATIONS
2014-15

Manipulation!

Check with a McCrary density test

rddensity: :rdplotdensity() in R

Noncompliance!

People on the margin of the cutoff might end up in/out of the program

The ACA, subsidies, Medicaid, and 138% of the poverty line

Sharp vs. fuzzy discontinuities

Sharp discontinuity

Perfect compliance

Fuzzy discontinuity

Imperfect compliance

Fuzzy discontinuities

Address noncompliance with instrumental variables (more on this later!)

Use an instrument for which side of the cutoff people should be on

Effect is only for compliers near the cutoff (complier LATE; doubly local effect)

