Measurement and DAGs

Content for Thursday, February 2, 2023

Readings

Measurement

DAGs

DAG example page

Slides

The slides for today’s lesson are available online as an HTML file. Use the buttons below to open the slides either as an interactive website or as a static PDF (for printing or storing for later). You can also click in the slides below and navigate through them with your left and right arrow keys.

View all slides in new window Download PDF of all slides

Tip

Fun fact: If you type ? (or shift + /) while going through the slides, you can see a list of special slide-specific commands.

Videos

Videos for each section of the lecture are available at this YouTube playlist.

You can also watch the playlist (and skip around to different sections) here:

In-class stuff

Here are all the materials we’ll use in class:

Bayesian statistics resources

In class I briefly mentioned the difference between frequentist and Bayesian statistics. You can see a bunch of additional resources and examples of these two approaches to statistics here. This huge blog post also shows how to do multilevel models with Bayesian models.

References

Huntington-Klein, Nick. 2021. The Effect: An Introduction to Research Design and Causality. Boca Raton, Florida: Chapman and Hall / CRC. https://theeffectbook.net/.
Rohrer, Julia M. 2018. “Thinking Clearly about Correlations and Causation: Graphical Causal Models for Observational Data.” Advances in Methods and Practices in Psychological Science 1 (1): 27–42. https://doi.org/10.1177/2515245917745629.
Rossi, Peter H., Mark W. Lipsey, and Gary T. Henry. 2019. Evaluation: A Systematic Approach. 8th ed. Los Angeles: Sage.
Schuessler, Julian, and Peter Selb. 2019. “Graphical Causal Models for Survey Inference.” Working Paper. SocArXiv. https://doi.org/10.31235/osf.io/hbg3m.